Posts

Showing posts from January, 2017

Causality in machine learning

Image
By OMKAR MURALIDHARAN, NIALL CARDIN, TODD PHILLIPS, AMIR NAJMI Given recent advances and interest in machine learning, those of us with traditional statistical training have had occasion to ponder the similarities and differences between the fields. Many of the distinctions are due to culture and tooling, but there are also differences in thinking which run deeper. Take, for instance, how each field views the provenance of the training data when building predictive models. For most of ML, the training data is a given, often presumed to be representative of the data against which the prediction model will be deployed, but not much else. With a few notable exceptions, ML abstracts away from the data generating mechanism, and hence sees the data as raw material from which predictions are to be extracted. Indeed, machine learning generally lacks the vocabulary to capture the distinction between observational data and randomized data that statistics finds crucial. To contrast machine lear...